Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Same Same, But Different: Conditional Multi-Task Learning for Demographic-Specific Toxicity Detection (2302.07372v2)

Published 14 Feb 2023 in cs.LG and stat.ML

Abstract: Algorithmic bias often arises as a result of differential subgroup validity, in which predictive relationships vary across groups. For example, in toxic language detection, comments targeting different demographic groups can vary markedly across groups. In such settings, trained models can be dominated by the relationships that best fit the majority group, leading to disparate performance. We propose framing toxicity detection as multi-task learning (MTL), allowing a model to specialize on the relationships that are relevant to each demographic group while also leveraging shared properties across groups. With toxicity detection, each task corresponds to identifying toxicity against a particular demographic group. However, traditional MTL requires labels for all tasks to be present for every data point. To address this, we propose Conditional MTL (CondMTL), wherein only training examples relevant to the given demographic group are considered by the loss function. This lets us learn group specific representations in each branch which are not cross contaminated by irrelevant labels. Results on synthetic and real data show that using CondMTL improves predictive recall over various baselines in general and for the minority demographic group in particular, while having similar overall accuracy.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com