Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Random Majority Opinion Diffusion: Stabilization Time, Absorbing States, and Influential Nodes (2302.06760v1)

Published 14 Feb 2023 in cs.DS, cs.AI, cs.DM, cs.MA, and cs.SI

Abstract: Consider a graph G with n nodes and m edges, which represents a social network, and assume that initially each node is blue or white. In each round, all nodes simultaneously update their color to the most frequent color in their neighborhood. This is called the Majority Model (MM) if a node keeps its color in case of a tie and the Random Majority Model (RMM) if it chooses blue with probability 1/2 and white otherwise. We prove that there are graphs for which RMM needs exponentially many rounds to reach a stable configuration in expectation, and such a configuration can have exponentially many states (i.e., colorings). This is in contrast to MM, which is known to always reach a stable configuration with one or two states in $O(m)$ rounds. For the special case of a cycle graph C_n, we prove the stronger and tight bounds of $\lceil n/2\rceil-1$ and $O(n2)$ in MM and RMM, respectively. Furthermore, we show that the number of stable colorings in MM on C_n is equal to $\Theta(\Phin)$, where $\Phi = (1+\sqrt{5})/2$ is the golden ratio, while it is equal to 2 for RMM. We also study the minimum size of a winning set, which is a set of nodes whose agreement on a color in the initial coloring enforces the process to end in a coloring where all nodes share that color. We present tight bounds on the minimum size of a winning set for both MM and RMM. Furthermore, we analyze our models for a random initial coloring, where each node is colored blue independently with some probability $p$ and white otherwise. Using some martingale analysis and counting arguments, we prove that the expected final number of blue nodes is respectively equal to $(2p2-p3)n/(1-p+p2)$ and pn in MM and RMM on a cycle graph C_n. Finally, we conduct some experiments which complement our theoretical findings and also lead to the proposal of some intriguing open problems and conjectures to be tackled in future work.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.