Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GenAug: Retargeting behaviors to unseen situations via Generative Augmentation (2302.06671v2)

Published 13 Feb 2023 in cs.RO

Abstract: Robot learning methods have the potential for widespread generalization across tasks, environments, and objects. However, these methods require large diverse datasets that are expensive to collect in real-world robotics settings. For robot learning to generalize, we must be able to leverage sources of data or priors beyond the robot's own experience. In this work, we posit that image-text generative models, which are pre-trained on large corpora of web-scraped data, can serve as such a data source. We show that despite these generative models being trained on largely non-robotics data, they can serve as effective ways to impart priors into the process of robot learning in a way that enables widespread generalization. In particular, we show how pre-trained generative models can serve as effective tools for semantically meaningful data augmentation. By leveraging these pre-trained models for generating appropriate "semantic" data augmentations, we propose a system GenAug that is able to significantly improve policy generalization. We apply GenAug to tabletop manipulation tasks, showing the ability to re-target behavior to novel scenarios, while only requiring marginal amounts of real-world data. We demonstrate the efficacy of this system on a number of object manipulation problems in the real world, showing a 40% improvement in generalization to novel scenes and objects.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.