Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Surround-View Vision-based 3D Detection for Autonomous Driving: A Survey (2302.06650v2)

Published 13 Feb 2023 in cs.CV

Abstract: Vision-based 3D Detection task is fundamental task for the perception of an autonomous driving system, which has peaked interest amongst many researchers and autonomous driving engineers. However achieving a rather good 3D BEV (Bird's Eye View) performance is not an easy task using 2D sensor input-data with cameras. In this paper we provide a literature survey for the existing Vision Based 3D detection methods, focused on autonomous driving. We have made detailed analysis of over $60$ papers leveraging Vision BEV detections approaches and highlighted different sub-groups for detailed understanding of common trends. Moreover, we have highlighted how the literature and industry trend have moved towards surround-view image based methods and note down thoughts on what special cases this method addresses. In conclusion, we provoke thoughts of 3D Vision techniques for future research based on shortcomings of the current techniques including the direction of collaborative perception.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.