Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FilFL: Client Filtering for Optimized Client Participation in Federated Learning (2302.06599v3)

Published 13 Feb 2023 in cs.LG, cs.AI, and cs.DC

Abstract: Federated learning, an emerging machine learning paradigm, enables clients to collaboratively train a model without exchanging local data. Clients participating in the training process significantly impact the convergence rate, learning efficiency, and model generalization. We propose a novel approach, client filtering, to improve model generalization and optimize client participation and training. The proposed method periodically filters available clients to identify a subset that maximizes a combinatorial objective function with an efficient greedy filtering algorithm. Thus, the clients are assessed as a combination rather than individually. We theoretically analyze the convergence of federated learning with client filtering in heterogeneous settings and evaluate its performance across diverse vision and language tasks, including realistic scenarios with time-varying client availability. Our empirical results demonstrate several benefits of our approach, including improved learning efficiency, faster convergence, and up to 10% higher test accuracy than training without client filtering.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.