Efficient Systematic Deletions/Insertions of $0$'s Error Control Codes and the $L_{1}$ Metric (Extended version) (2302.06563v1)
Abstract: This paper gives some theory and efficient design of binary block systematic codes capable of controlling the deletions of the symbol $0$'' (referred to as $0$-deletions) and/or the insertions of the symbol
$0$'' (referred to as $0$-insertions). The problem of controlling $0$-deletions and/or $0$-insertions (referred to as $0$-errors) is known to be equivalent to the efficient design of $L_{1}$ metric asymmetric error control codes over the natural alphabet, $\mathbb{N}$. So, $t$ $0$-insertion correcting codes can actually correct $t$ $0$-errors, detect $(t+1)$ $0$-errors and, simultaneously, detect all occurrences of only $0$-deletions or only $0$-insertions in every received word (briefly, they are $t$-Symmetric $0$-Error Correcting/$(t+1)$-Symmetric $0$-Error Detecting/All Unidirectional $0$-Error Detecting ($t$-Sy$0$EC/$(t+1)$-Sy$0$ED/AU$0$ED) codes). From the relations with the $L_{1}$ distance, optimal systematic code designs are given. In general, for all $t,k\in\mathbb{N}$, a recursive method is presented to encode $k$ information bits into efficient systematic $t$-Sy$0$EC/$(t+1)$-Sy$0$ED/AU$0$ED codes of length $$ n\leq k+t\log_{2}k+o(t\log n) $$ as $n\in\mathbb{N}$ increases. Decoding can be efficiently performed by algebraic means using the Extended Euclidean Algorithm (EEA).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.