Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Myhill-Nerode Theorem for Generalized Automata, with Applications to Pattern Matching and Compression (2302.06506v2)

Published 13 Feb 2023 in cs.FL

Abstract: The model of generalized automata, introduced by Eilenberg in 1974, allows representing a regular language more concisely than conventional automata by allowing edges to be labeled not only with characters, but also strings. Giammaresi and Montalbano introduced a notion of determinism for generalized automata [STACS 1995]. While generalized deterministic automata retain many properties of conventional deterministic automata, the uniqueness of a minimal generalized deterministic automaton is lost. In the first part of the paper, we show that the lack of uniqueness can be explained by introducing a set $ \mathcal{W(A)} $ associated with a generalized automaton $ \mathcal{A} $. By fixing $ \mathcal{W(A)} $, we are able to derive for the first time a full Myhill-Nerode theorem for generalized automata, which contains the textbook Myhill-Nerode theorem for conventional automata as a degenerate case. In the second part of the paper, we show that the set $ \mathcal{W(A)} $ leads to applications for pattern matching and data compression. Wheeler automata [TCS 2017, SODA 2020] are a popular class of automata that can be compactly stored using $ e \log \sigma (1 + o(1)) + O(e) $ bits ($ e $ being the number of edges, $ \sigma $ being the size of the alphabet) in such a way that pattern matching queries can be solved in $ \tilde{O}(m) $ time ($ m $ being the length of the pattern). In the paper, we show how to extend these results to generalized automata. More precisely, a Wheeler generalized automata can be stored using $ \mathfrak{e} \log \sigma (1 + o(1)) + O(e + rn) $ bits so that pattern matching queries can be solved in $ \tilde{O}(r m) $ time, where $ \mathfrak{e} $ is the total length of all edge labels, $ r $ is the maximum length of an edge label and $ n $ is the number of states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Tatsuya Akutsu. A linear time pattern matching algorithm between a string and a tree. In Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinatorial Pattern Matching, pages 1–10, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.
  2. Linear-time minimization of wheeler dfas. In 2022 Data Compression Conference (DCC), pages 53–62, 2022. doi:10.1109/DCC52660.2022.00013.
  3. Regular Languages meet Prefix Sorting, pages 911–930. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611975994.55, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611975994.55, doi:10.1137/1.9781611975994.55.
  4. Wheeler languages. Information and Computation, 281:104820, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0890540121001504, doi:10.1016/j.ic.2021.104820.
  5. Pattern matching in hypertext. Journal of Algorithms, 35(1):82–99, 2000. URL: https://www.sciencedirect.com/science/article/pii/S0196677499910635, doi:10.1006/jagm.1999.1063.
  6. Computational graph pangenomics: a tutorial on data structures and their applications. Nat. Comput., 21(1):81–108, 2022. doi:10.1007/s11047-022-09882-6.
  7. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5):455–477, 2012. PMID: 22506599. arXiv:https://doi.org/10.1089/cmb.2012.0021, doi:10.1089/cmb.2012.0021.
  8. Sorting Finite Automata via Partition Refinement. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms (ESA 2023), volume 274 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–15:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2023/18668, doi:10.4230/LIPIcs.ESA.2023.15.
  9. Succinct de bruijn graphs. In Ben Raphael and Jijun Tang, editors, Algorithms in Bioinformatics, pages 225–235, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
  10. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical report, 1994.
  11. Computing matching statistics on wheeler dfas. In 2023 Data Compression Conference (DCC), pages 150–159, 2023. doi:10.1109/DCC55655.2023.00023.
  12. Nicola Cotumaccio. Graphs can be succinctly indexed for pattern matching in o⁢(|e|2+|v|5/2)𝑜superscript𝑒2superscript𝑣52o(|e|^{2}+|v|^{5/2})italic_o ( | italic_e | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_v | start_POSTSUPERSCRIPT 5 / 2 end_POSTSUPERSCRIPT ) time. In 2022 Data Compression Conference (DCC), pages 272–281, 2022. doi:10.1109/DCC52660.2022.00035.
  13. Nicola Cotumaccio. Prefix Sorting DFAs: A Recursive Algorithm. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation (ISAAC 2023), volume 283 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–22:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.22, doi:10.4230/LIPIcs.ISAAC.2023.22.
  14. Co-lexicographically ordering automata and regular languages - part i. J. ACM, 70(4), aug 2023. doi:10.1145/3607471.
  15. Space-time trade-offs for the lcp array of wheeler dfas. In Franco Maria Nardini, Nadia Pisanti, and Rossano Venturini, editors, String Processing and Information Retrieval, pages 143–156, Cham, 2023. Springer Nature Switzerland.
  16. On indexing and compressing finite automata. In Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’21, page 2585–2599, USA, 2021. Society for Industrial and Applied Mathematics.
  17. Samuel Eilenberg. Automata, Languages, and Machines. Academic Press, Inc., USA, 1974.
  18. On the complexity of string matching for graphs. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.55.
  19. Graphs cannot be indexed in polynomial time for sub-quadratic time string matching, unless seth fails. In Tomáš Bureš, Riccardo Dondi, Johann Gamper, Giovanna Guerrini, Tomasz Jurdziński, Claus Pahl, Florian Sikora, and Prudence W.H. Wong, editors, SOFSEM 2021: Theory and Practice of Computer Science, pages 608–622, Cham, 2021. Springer International Publishing.
  20. On the complexity of string matching for graphs. ACM Trans. Algorithms, 19(3), apr 2023. doi:10.1145/3588334.
  21. Algorithms and complexity on indexing elastic founder graphs. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ISAAC.2021.20.
  22. Algorithms and complexity on indexing founder graphs. Algorithmica, 85(6):1586–1623, 2023. doi:10.1007/s00453-022-01007-w.
  23. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc. 41st Annual Symposium on Foundations of Computer Science (FOCS’00), pages 390–398, 2000. doi:10.1109/SFCS.2000.892127.
  24. Indexing compressed text. J. ACM, 52(4):552–581, jul 2005. doi:10.1145/1082036.1082039.
  25. Wheeler graphs: A framework for bwt-based data structures. Theoretical Computer Science, 698:67–78, 2017. Algorithms, Strings and Theoretical Approaches in the Big Data Era (In Honor of the 60th Birthday of Professor Raffaele Giancarlo). URL: https://www.sciencedirect.com/science/article/pii/S0304397517305285, doi:10.1016/j.tcs.2017.06.016.
  26. Deterministic generalized automata. In Ernst W. Mayr and Claude Puech, editors, STACS 95, 12th Annual Symposium on Theoretical Aspects of Computer Science, Munich, Germany, March 2-4, 1995, Proceedings, volume 900 of Lecture Notes in Computer Science, pages 325–336. Springer, 1995. doi:10.1007/3-540-59042-0_84.
  27. Deterministic generalized automata. Theor. Comput. Sci., 215(1-2):191–208, 1999. doi:10.1016/S0304-3975(97)00166-7.
  28. On the complexity of recognizing wheeler graphs. Algorithmica, 84(3):784–814, mar 2022. doi:10.1007/s00453-021-00917-5.
  29. Kosaburo Hashiguchi. Algorithms for determining the smallest number of nonterminals (states) sufficient for generating (accepting) a regular language. In Javier Leach Albert, Burkhard Monien, and Mario Rodríguez Artalejo, editors, Automata, Languages and Programming, pages 641–648, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.
  30. John Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In Zvi Kohavi and Azaria Paz, editors, Theory of Machines and Computations, pages 189–196. Academic Press, 1971. URL: https://www.sciencedirect.com/science/article/pii/B9780124177505500221, doi:10.1016/B978-0-12-417750-5.50022-1.
  31. Introduction to Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., USA, 2006.
  32. A new algorithm for DNA sequence assembly. Journal of computational biology : a journal of computational molecular cell biology, 2 2:291–306, 1995.
  33. Faster prefix-sorting algorithms for deterministic finite automata. In Laurent Bulteau and Zsuzsanna Lipták, editors, 34th Annual Symposium on Combinatorial Pattern Matching, CPM 2023, June 26-28, 2023, Marne-la-Vallée, France, volume 259 of LIPIcs, pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.CPM.2023.16.
  34. Fast pattern matching in strings. SIAM Journal on Computing, 6(2):323–350, 1977. arXiv:https://doi.org/10.1137/0206024, doi:10.1137/0206024.
  35. Approximate string matching with arbitrary costs for text and hypertext. In Advances In Structural And Syntactic Pattern Recognition, pages 22–33. World Scientific, 1992.
  36. Genome-Scale Algorithm Design: Bioinformatics in the Era of High-Throughput Sequencing. Cambridge University Press, 2 edition, 2023.
  37. Gonzalo Navarro. Improved approximate pattern matching on hypertext. Theor. Comput. Sci., 237(1–2):455–463, apr 2000. doi:10.1016/S0304-3975(99)00333-3.
  38. Gonzalo Navarro. Compact Data Structures: A Practical Approach. Cambridge University Press, 2016. doi:10.1017/CBO9781316588284.
  39. String matching in hypertext. In Zvi Galil and Esko Ukkonen, editors, Combinatorial Pattern Matching, pages 318–329, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.
  40. An Eulerian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753, 2001. URL: https://www.pnas.org/doi/abs/10.1073/pnas.171285098, arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.171285098, doi:10.1073/pnas.171285098.
  41. Aligning sequences to general graphs in o(v + me) time. bioRxiv, 2017. URL: https://www.biorxiv.org/content/early/2017/11/08/216127, arXiv:https://www.biorxiv.org/content/early/2017/11/08/216127.full.pdf, doi:10.1101/216127.
  42. Linear time construction of indexable elastic founder graphs. In Cristina Bazgan and Henning Fernau, editors, Combinatorial Algorithms, pages 480–493, Cham, 2022. Springer International Publishing.
  43. Efficient construction of an assembly string graph using the fm-index. Bioinform., 26(12):367–373, 2010. doi:10.1093/bioinformatics/btq217.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Nicola Cotumaccio (15 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com