Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Joint Span Segmentation and Rhetorical Role Labeling with Data Augmentation for Legal Documents (2302.06448v1)

Published 13 Feb 2023 in cs.CL and cs.IR

Abstract: Segmentation and Rhetorical Role Labeling of legal judgements play a crucial role in retrieval and adjacent tasks, including case summarization, semantic search, argument mining etc. Previous approaches have formulated this task either as independent classification or sequence labeling of sentences. In this work, we reformulate the task at span level as identifying spans of multiple consecutive sentences that share the same rhetorical role label to be assigned via classification. We employ semi-Markov Conditional Random Fields (CRF) to jointly learn span segmentation and span label assignment. We further explore three data augmentation strategies to mitigate the data scarcity in the specialized domain of law where individual documents tend to be very long and annotation cost is high. Our experiments demonstrate improvement of span-level prediction metrics with a semi-Markov CRF model over a CRF baseline. This benefit is contingent on the presence of multi sentence spans in the document.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.