Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Content-Adaptive Motion Rate Adaption for Learned Video Compression (2302.06293v1)

Published 13 Feb 2023 in eess.IV and cs.CV

Abstract: This paper introduces an online motion rate adaptation scheme for learned video compression, with the aim of achieving content-adaptive coding on individual test sequences to mitigate the domain gap between training and test data. It features a patch-level bit allocation map, termed the $\alpha$-map, to trade off between the bit rates for motion and inter-frame coding in a spatially-adaptive manner. We optimize the $\alpha$-map through an online back-propagation scheme at inference time. Moreover, we incorporate a look-ahead mechanism to consider its impact on future frames. Extensive experimental results confirm that the proposed scheme, when integrated into a conditional learned video codec, is able to adapt motion bit rate effectively, showing much improved rate-distortion performance particularly on test sequences with complicated motion characteristics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube