Content-Adaptive Motion Rate Adaption for Learned Video Compression (2302.06293v1)
Abstract: This paper introduces an online motion rate adaptation scheme for learned video compression, with the aim of achieving content-adaptive coding on individual test sequences to mitigate the domain gap between training and test data. It features a patch-level bit allocation map, termed the $\alpha$-map, to trade off between the bit rates for motion and inter-frame coding in a spatially-adaptive manner. We optimize the $\alpha$-map through an online back-propagation scheme at inference time. Moreover, we incorporate a look-ahead mechanism to consider its impact on future frames. Extensive experimental results confirm that the proposed scheme, when integrated into a conditional learned video codec, is able to adapt motion bit rate effectively, showing much improved rate-distortion performance particularly on test sequences with complicated motion characteristics.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.