Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Do PAC-Learners Learn the Marginal Distribution? (2302.06285v4)

Published 13 Feb 2023 in cs.LG and stat.ML

Abstract: The Fundamental Theorem of PAC Learning asserts that learnability of a concept class $H$ is equivalent to the $\textit{uniform convergence}$ of empirical error in $H$ to its mean, or equivalently, to the problem of $\textit{density estimation}$, learnability of the underlying marginal distribution with respect to events in $H$. This seminal equivalence relies strongly on PAC learning's `distribution-free' assumption, that the adversary may choose any marginal distribution over data. Unfortunately, the distribution-free model is known to be overly adversarial in practice, failing to predict the success of modern machine learning algorithms, but without the Fundamental Theorem our theoretical understanding of learning under distributional constraints remains highly limited. In this work, we revisit the connection between PAC learning, uniform convergence, and density estimation beyond the distribution-free setting when the adversary is restricted to choosing a marginal distribution from a known family $\mathscr{P}$. We prove that while the traditional Fundamental Theorem indeed fails, a finer-grained connection between the three fundamental notions continues to hold: 1. PAC-Learning is strictly sandwiched between two refined models of density estimation, differing only in whether the learner $\textit{knows}$ the set of well-estimated events in $H$. 2. Under reasonable assumptions on $H$ and $\mathscr{P}$, density estimation is equivalent to $\textit{uniform estimation}$, a relaxation of uniform convergence allowing non-empirical estimators. Together, our results give a clearer picture of how the Fundamental Theorem extends beyond the distribution-free setting and shed new light on the classically challenging problem of learning under arbitrary distributional assumptions.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com