Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unlabeled Imperfect Demonstrations in Adversarial Imitation Learning (2302.06271v1)

Published 13 Feb 2023 in cs.LG and cs.AI

Abstract: Adversarial imitation learning has become a widely used imitation learning framework. The discriminator is often trained by taking expert demonstrations and policy trajectories as examples respectively from two categories (positive vs. negative) and the policy is then expected to produce trajectories that are indistinguishable from the expert demonstrations. But in the real world, the collected expert demonstrations are more likely to be imperfect, where only an unknown fraction of the demonstrations are optimal. Instead of treating imperfect expert demonstrations as absolutely positive or negative, we investigate unlabeled imperfect expert demonstrations as they are. A positive-unlabeled adversarial imitation learning algorithm is developed to dynamically sample expert demonstrations that can well match the trajectories from the constantly optimized agent policy. The trajectories of an initial agent policy could be closer to those non-optimal expert demonstrations, but within the framework of adversarial imitation learning, agent policy will be optimized to cheat the discriminator and produce trajectories that are similar to those optimal expert demonstrations. Theoretical analysis shows that our method learns from the imperfect demonstrations via a self-paced way. Experimental results on MuJoCo and RoboSuite platforms demonstrate the effectiveness of our method from different aspects.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)