Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Local Visual Modeling for Image Captioning (2302.06098v1)

Published 13 Feb 2023 in cs.CV and cs.MM

Abstract: In this paper, we study the local visual modeling with grid features for image captioning, which is critical for generating accurate and detailed captions. To achieve this target, we propose a Locality-Sensitive Transformer Network (LSTNet) with two novel designs, namely Locality-Sensitive Attention (LSA) and Locality-Sensitive Fusion (LSF). LSA is deployed for the intra-layer interaction in Transformer via modeling the relationship between each grid and its neighbors. It reduces the difficulty of local object recognition during captioning. LSF is used for inter-layer information fusion, which aggregates the information of different encoder layers for cross-layer semantical complementarity. With these two novel designs, the proposed LSTNet can model the local visual information of grid features to improve the captioning quality. To validate LSTNet, we conduct extensive experiments on the competitive MS-COCO benchmark. The experimental results show that LSTNet is not only capable of local visual modeling, but also outperforms a bunch of state-of-the-art captioning models on offline and online testings, i.e., 134.8 CIDEr and 136.3 CIDEr, respectively. Besides, the generalization of LSTNet is also verified on the Flickr8k and Flickr30k datasets

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.