Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

gpcgc: a green point cloud geometry coding method (2302.06062v1)

Published 13 Feb 2023 in eess.IV

Abstract: A low-complexity point cloud compression method called the Green Point Cloud Geometry Codec (GPCGC), is proposed to encode the 3D spatial coordinates of static point clouds efficiently. GPCGC consists of two modules. In the first module, point coordinates of input point clouds are hierarchically organized into an octree structure. Points at each leaf node are projected along one of three axes to yield image maps. In the second module, the occupancy map is clustered into 9 modes while the depth map is coded by a low-complexity high-efficiency image codec, called the green image codec (GIC). GIC is a multi-resolution codec based on vector quantization (VQ). Its complexity is significantly lower than HEVC-Intra. Furthermore, the rate-distortion optimization (RDO) technique is used to select the optimal coding parameters. GPCGC is a progressive codec, and it offers a coding performance competitive with MPEG's V-PCC and G-PCC standards at significantly lower complexity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.