Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Near-optimal learning with average Hölder smoothness (2302.06005v3)

Published 12 Feb 2023 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We generalize the notion of average Lipschitz smoothness proposed by Ashlagi et al. (COLT 2021) by extending it to H\"older smoothness. This measure of the "effective smoothness" of a function is sensitive to the underlying distribution and can be dramatically smaller than its classic "worst-case" H\"older constant. We consider both the realizable and the agnostic (noisy) regression settings, proving upper and lower risk bounds in terms of the average H\"older smoothness; these rates improve upon both previously known rates even in the special case of average Lipschitz smoothness. Moreover, our lower bound is tight in the realizable setting up to log factors, thus we establish the minimax rate. From an algorithmic perspective, since our notion of average smoothness is defined with respect to the unknown underlying distribution, the learner does not have an explicit representation of the function class, hence is unable to execute ERM. Nevertheless, we provide distinct learning algorithms that achieve both (nearly) optimal learning rates. Our results hold in any totally bounded metric space, and are stated in terms of its intrinsic geometry. Overall, our results show that the classic worst-case notion of H\"older smoothness can be essentially replaced by its average, yielding considerably sharper guarantees.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.