Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quark: An Integer RISC-V Vector Processor for Sub-Byte Quantized DNN Inference (2302.05996v1)

Published 12 Feb 2023 in cs.AR

Abstract: In this paper, we present Quark, an integer RISC-V vector processor specifically tailored for sub-byte DNN inference. Quark is implemented in GlobalFoundries' 22FDX FD-SOI technology. It is designed on top of Ara, an open-source 64-bit RISC-V vector processor. To accommodate sub-byte DNN inference, Quark extends Ara by adding specialized vector instructions to perform sub-byte quantized operations. We also remove the floating-point unit from Quarks' lanes and use the CVA6 RISC-V scalar core for the re-scaling operations that are required in quantized neural network inference. This makes each lane of Quark 2 times smaller and 1.9 times more power efficient compared to the ones of Ara. In this paper we show that Quark can run quantized models at sub-byte precision. Notably we show that for 1-bit and 2-bit quantized models, Quark can accelerate computation of Conv2d over various ranges of inputs and kernel sizes.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.