Papers
Topics
Authors
Recent
2000 character limit reached

Recursive Estimation of Conditional Kernel Mean Embeddings (2302.05955v2)

Published 12 Feb 2023 in stat.ML, cs.LG, and stat.ME

Abstract: Kernel mean embeddings, a widely used technique in machine learning, map probability distributions to elements of a reproducing kernel Hilbert space (RKHS). For supervised learning problems, where input-output pairs are observed, the conditional distribution of outputs given the inputs is a key object. The input dependent conditional distribution of an output can be encoded with an RKHS valued function, the conditional kernel mean map. In this paper we present a new recursive algorithm to estimate the conditional kernel mean map in a Hilbert space valued $L_2$ space, that is in a Bochner space. We prove the weak and strong $L_2$ consistency of our recursive estimator under mild conditions. The idea is to generalize Stone's theorem for Hilbert space valued regression in a locally compact Polish space. We present new insights about conditional kernel mean embeddings and give strong asymptotic bounds regarding the convergence of the proposed recursive method. Finally, the results are demonstrated on three application domains: for inputs coming from Euclidean spaces, Riemannian manifolds and locally compact subsets of function spaces.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.