Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Generalized Few-Shot Continual Learning with Contrastive Mixture of Adapters (2302.05936v1)

Published 12 Feb 2023 in cs.CV

Abstract: The goal of Few-Shot Continual Learning (FSCL) is to incrementally learn novel tasks with limited labeled samples and preserve previous capabilities simultaneously, while current FSCL methods are all for the class-incremental purpose. Moreover, the evaluation of FSCL solutions is only the cumulative performance of all encountered tasks, but there is no work on exploring the domain generalization ability. Domain generalization is a challenging yet practical task that aims to generalize beyond training domains. In this paper, we set up a Generalized FSCL (GFSCL) protocol involving both class- and domain-incremental situations together with the domain generalization assessment. Firstly, two benchmark datasets and protocols are newly arranged, and detailed baselines are provided for this unexplored configuration. We find that common continual learning methods have poor generalization ability on unseen domains and cannot better cope with the catastrophic forgetting issue in cross-incremental tasks. In this way, we further propose a rehearsal-free framework based on Vision Transformer (ViT) named Contrastive Mixture of Adapters (CMoA). Due to different optimization targets of class increment and domain increment, the CMoA contains two parts: (1) For the class-incremental issue, the Mixture of Adapters (MoA) module is incorporated into ViT, then cosine similarity regularization and the dynamic weighting are designed to make each adapter learn specific knowledge and concentrate on particular classes. (2) For the domain-related issues and domain-invariant representation learning, we alleviate the inner-class variation by prototype-calibrated contrastive learning. The codes and protocols are available at https://github.com/yawencui/CMoA.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube