Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data efficiency and extrapolation trends in neural network interatomic potentials (2302.05823v2)

Published 12 Feb 2023 in cs.LG and physics.chem-ph

Abstract: Over the last few years, key architectural advances have been proposed for neural network interatomic potentials (NNIPs), such as incorporating message-passing networks, equivariance, or many-body expansion terms. Although modern NNIP models exhibit small differences in energy/forces errors, improvements in accuracy are still considered the main target when developing new NNIP architectures. In this work, we show how architectural and optimization choices influence the generalization of NNIPs, revealing trends in molecular dynamics (MD) stability, data efficiency, and loss landscapes. Using the 3BPA dataset, we show that test errors in NNIP follow a scaling relation and can be robust to noise, but cannot predict MD stability in the high-accuracy regime. To circumvent this problem, we propose the use of loss landscape visualizations and a metric of loss entropy for predicting the generalization power of NNIPs. With a large-scale study on NequIP and MACE, we show that the loss entropy predicts out-of-distribution error and MD stability despite being computed only on the training set. Using this probe, we demonstrate how the choice of optimizers, loss function weighting, data normalization, and other architectural decisions influence the extrapolation behavior of NNIPs. Finally, we relate loss entropy to data efficiency, demonstrating that flatter landscapes also predict learning curve slopes. Our work provides a deep learning justification for the extrapolation performance of many common NNIPs, and introduces tools beyond accuracy metrics that can be used to inform the development of next-generation models.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.