Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Decoding of Attentional Selection in Multi-Talker Environments with Self-Supervised Learned Speech Representation (2302.05756v1)

Published 11 Feb 2023 in eess.AS, cs.SD, and eess.SP

Abstract: Auditory attention decoding (AAD) is a technique used to identify and amplify the talker that a listener is focused on in a noisy environment. This is done by comparing the listener's brainwaves to a representation of all the sound sources to find the closest match. The representation is typically the waveform or spectrogram of the sounds. The effectiveness of these representations for AAD is uncertain. In this study, we examined the use of self-supervised learned speech representation in improving the accuracy and speed of AAD. We recorded the brain activity of three subjects using invasive electrocorticography (ECoG) as they listened to two conversations and focused on one. We used WavLM to extract a latent representation of each talker and trained a spatiotemporal filter to map brain activity to intermediate representations of speech. During the evaluation, the reconstructed representation is compared to each speaker's representation to determine the target speaker. Our results indicate that speech representation from WavLM provides better decoding accuracy and speed than the speech envelope and spectrogram. Our findings demonstrate the advantages of self-supervised learned speech representation for auditory attention decoding and pave the way for developing brain-controlled hearable technologies.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.