Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Partial k-means to avoid outliers, mathematical programming formulations, complexity results (2302.05644v3)

Published 11 Feb 2023 in cs.CC, cs.CG, and cs.DM

Abstract: A well-known bottleneck of Min-Sum-of-Square Clustering (MSSC, the celebrated $k$-means problem) is to tackle the presence of outliers. In this paper, we propose a Partial clustering variant termed PMSSC which considers a fixed number of outliers to remove. We solve PMSSC by Integer Programming formulations and complexity results extending the ones from MSSC are studied. PMSSC is NP-hard in Euclidean space when the dimension or the number of clusters is greater than $2$. Finally, one-dimensional cases are studied: Unweighted PMSSC is polynomial in that case and solved with a dynamic programming algorithm, extending the optimality property of MSSC with interval clustering. This result holds also for unweighted $k$-medoids with outliers. A weaker optimality property holds for weighted PMSSC, but NP-hardness or not remains an open question in dimension one.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.