Partial k-means to avoid outliers, mathematical programming formulations, complexity results (2302.05644v3)
Abstract: A well-known bottleneck of Min-Sum-of-Square Clustering (MSSC, the celebrated $k$-means problem) is to tackle the presence of outliers. In this paper, we propose a Partial clustering variant termed PMSSC which considers a fixed number of outliers to remove. We solve PMSSC by Integer Programming formulations and complexity results extending the ones from MSSC are studied. PMSSC is NP-hard in Euclidean space when the dimension or the number of clusters is greater than $2$. Finally, one-dimensional cases are studied: Unweighted PMSSC is polynomial in that case and solved with a dynamic programming algorithm, extending the optimality property of MSSC with interval clustering. This result holds also for unweighted $k$-medoids with outliers. A weaker optimality property holds for weighted PMSSC, but NP-hardness or not remains an open question in dimension one.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.