Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Operation-level Progressive Differentiable Architecture Search (2302.05632v1)

Published 11 Feb 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Differentiable Neural Architecture Search (DARTS) is becoming more and more popular among Neural Architecture Search (NAS) methods because of its high search efficiency and low compute cost. However, the stability of DARTS is very inferior, especially skip connections aggregation that leads to performance collapse. Though existing methods leverage Hessian eigenvalues to alleviate skip connections aggregation, they make DARTS unable to explore architectures with better performance. In the paper, we propose operation-level progressive differentiable neural architecture search (OPP-DARTS) to avoid skip connections aggregation and explore better architectures simultaneously. We first divide the search process into several stages during the search phase and increase candidate operations into the search space progressively at the beginning of each stage. It can effectively alleviate the unfair competition between operations during the search phase of DARTS by offsetting the inherent unfair advantage of the skip connection over other operations. Besides, to keep the competition between operations relatively fair and select the operation from the candidate operations set that makes training loss of the supernet largest. The experiment results indicate that our method is effective and efficient. Our method's performance on CIFAR-10 is superior to the architecture found by standard DARTS, and the transferability of our method also surpasses standard DARTS. We further demonstrate the robustness of our method on three simple search spaces, i.e., S2, S3, S4, and the results show us that our method is more robust than standard DARTS. Our code is available at https://github.com/zxunyu/OPP-DARTS.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube