Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cross-domain Random Pre-training with Prototypes for Reinforcement Learning (2302.05614v5)

Published 11 Feb 2023 in cs.LG and cs.AI

Abstract: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Unsupervised cross-domain Reinforcement Learning (RL) pre-training shows great potential for challenging continuous visual control but poses a big challenge. In this paper, we propose \textbf{C}ross-domain \textbf{R}andom \textbf{P}re-\textbf{T}raining with \textbf{pro}totypes (CRPTpro), a novel, efficient, and effective self-supervised cross-domain RL pre-training framework. CRPTpro decouples data sampling from encoder pre-training, proposing decoupled random collection to easily and quickly generate a qualified cross-domain pre-training dataset. Moreover, a novel prototypical self-supervised algorithm is proposed to pre-train an effective visual encoder that is generic across different domains. Without finetuning, the cross-domain encoder can be implemented for challenging downstream tasks defined in different domains, either seen or unseen. Compared with recent advanced methods, CRPTpro achieves better performance on downstream policy learning without extra training on exploration agents for data collection, greatly reducing the burden of pre-training. We conduct extensive experiments across eight challenging continuous visual-control domains, including balance control, robot locomotion, and manipulation. CRPTpro significantly outperforms the next best Proto-RL(C) on 11/12 cross-domain downstream tasks with only 54.5\% wall-clock pre-training time, exhibiting state-of-the-art pre-training performance with greatly improved pre-training efficiency.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: