Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Emotion Detection From Social Media Posts (2302.05610v1)

Published 11 Feb 2023 in cs.LG, cs.AI, and cs.CL

Abstract: Over the last few years, social media has evolved into a medium for expressing personal views, emotions, and even business and political proposals, recommendations, and advertisements. We address the topic of identifying emotions from text data obtained from social media posts like Twitter in this research. We have deployed different traditional machine learning techniques such as Support Vector Machines (SVM), Naive Bayes, Decision Trees, and Random Forest, as well as deep neural network models such as LSTM, CNN, GRU, BiLSTM, BiGRU to classify these tweets into four emotion categories (Fear, Anger, Joy, and Sadness). Furthermore, we have constructed a BiLSTM and BiGRU ensemble model. The evaluation result shows that the deep neural network models(BiGRU, to be specific) produce the most promising results compared to traditional machine learning models, with an 87.53 % accuracy rate. The ensemble model performs even better (87.66 %), albeit the difference is not significant. This result will aid in the development of a decision-making tool that visualizes emotional fluctuations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.