Emergent Mind

On the lower bound for the length of minimal codes

(2302.05350)
Published Feb 10, 2023 in cs.IT , math.CO , and math.IT

Abstract

In recent years, many connections have been made between minimal codes, a classical object in coding theory, and other remarkable structures in finite geometry and combinatorics. One of the main problems related to minimal codes is to give lower and upper bounds on the length $m(k,q)$ of the shortest minimal codes of a given dimension $k$ over the finite field $\mathbb{F}q$. It has been recently proved that $m(k, q) \geq (q+1)(k-1)$. In this note, we prove that $\liminf{k \rightarrow \infty} \frac{m(k, q)}{k} \geq (q+ \varepsilon(q) )$, where $\varepsilon$ is an increasing function such that $1.52 <\varepsilon(2)\leq \varepsilon(q) \leq \sqrt{2} + \frac{1}{2}$. Hence, the previously known lower bound is not tight for large enough $k$. We then focus on the binary case and prove some structural results on minimal codes of length $3(k-1)$. As a byproduct, we are able to show that, if $k = 5 \pmod 8$ and for other small values of $k$, the bound is not tight.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.