Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the lower bound for the length of minimal codes (2302.05350v1)

Published 10 Feb 2023 in cs.IT, math.CO, and math.IT

Abstract: In recent years, many connections have been made between minimal codes, a classical object in coding theory, and other remarkable structures in finite geometry and combinatorics. One of the main problems related to minimal codes is to give lower and upper bounds on the length $m(k,q)$ of the shortest minimal codes of a given dimension $k$ over the finite field $\mathbb{F}q$. It has been recently proved that $m(k, q) \geq (q+1)(k-1)$. In this note, we prove that $\liminf{k \rightarrow \infty} \frac{m(k, q)}{k} \geq (q+ \varepsilon(q) )$, where $\varepsilon$ is an increasing function such that $1.52 <\varepsilon(2)\leq \varepsilon(q) \leq \sqrt{2} + \frac{1}{2}$. Hence, the previously known lower bound is not tight for large enough $k$. We then focus on the binary case and prove some structural results on minimal codes of length $3(k-1)$. As a byproduct, we are able to show that, if $k = 5 \pmod 8$ and for other small values of $k$, the bound is not tight.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.