Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

PATCorrect: Non-autoregressive Phoneme-augmented Transformer for ASR Error Correction (2302.05040v2)

Published 10 Feb 2023 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: Speech-to-text errors made by automatic speech recognition (ASR) systems negatively impact downstream models. Error correction models as a post-processing text editing method have been recently developed for refining the ASR outputs. However, efficient models that meet the low latency requirements of industrial grade production systems have not been well studied. We propose PATCorrect-a novel non-autoregressive (NAR) approach based on multi-modal fusion leveraging representations from both text and phoneme modalities, to reduce word error rate (WER) and perform robustly with varying input transcription quality. We demonstrate that PATCorrect consistently outperforms state-of-the-art NAR method on English corpus across different upstream ASR systems, with an overall 11.62% WER reduction (WERR) compared to 9.46% WERR achieved by other methods using text only modality. Besides, its inference latency is at tens of milliseconds, making it ideal for systems with low latency requirements.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.