Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Regularization for Strategy Exploration in Empirical Game-Theoretic Analysis (2302.04928v1)

Published 9 Feb 2023 in cs.GT and cs.MA

Abstract: In iterative approaches to empirical game-theoretic analysis (EGTA), the strategy space is expanded incrementally based on analysis of intermediate game models. A common approach to strategy exploration, represented by the double oracle algorithm, is to add strategies that best-respond to a current equilibrium. This approach may suffer from overfitting and other limitations, leading the developers of the policy-space response oracle (PSRO) framework for iterative EGTA to generalize the target of best response, employing what they term meta-strategy solvers (MSSs). Noting that many MSSs can be viewed as perturbed or approximated versions of Nash equilibrium, we adopt an explicit regularization perspective to the specification and analysis of MSSs. We propose a novel MSS called regularized replicator dynamics (RRD), which simply truncates the process based on a regret criterion. We show that RRD is more adaptive than existing MSSs and outperforms them in various games. We extend our study to three-player games, for which the payoff matrix is cubic in the number of strategies and so exhaustively evaluating profiles may not be feasible. We propose a profile search method that can identify solutions from incomplete models, and combine this with iterative model construction using a regularized MSS. Finally, and most importantly, we reveal that the regret of best response targets has a tremendous influence on the performance of strategy exploration through experiments, which provides an explanation for the effectiveness of regularization in PSRO.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.