Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Zero-Shot Learning for Requirements Classification: An Exploratory Study (2302.04723v2)

Published 9 Feb 2023 in cs.SE and cs.AI

Abstract: Context: Requirements engineering researchers have been experimenting with machine learning and deep learning approaches for a range of RE tasks, such as requirements classification, requirements tracing, ambiguity detection, and modelling. However, most of today's ML/DL approaches are based on supervised learning techniques, meaning that they need to be trained using a large amount of task-specific labelled training data. This constraint poses an enormous challenge to RE researchers, as the lack of labelled data makes it difficult for them to fully exploit the benefit of advanced ML/DL technologies. Objective: This paper addresses this problem by showing how a zero-shot learning approach can be used for requirements classification without using any labelled training data. We focus on the classification task because many RE tasks can be framed as classification problems. Method: The ZSL approach used in our study employs contextual word-embeddings and transformer-based LLMs. We demonstrate this approach through a series of experiments to perform three classification tasks: (1)FR/NFR: classification functional requirements vs non-functional requirements; (2)NFR: identification of NFR classes; (3)Security: classification of security vs non-security requirements. Results: The study shows that the ZSL approach achieves an F1 score of 0.66 for the FR/NFR task. For the NFR task, the approach yields F1~0.72-0.80, considering the most frequent classes. For the Security task, F1~0.66. All of the aforementioned F1 scores are achieved with zero-training efforts. Conclusion: This study demonstrates the potential of ZSL for requirements classification. An important implication is that it is possible to have very little or no training data to perform classification tasks. The proposed approach thus contributes to the solution of the long-standing problem of data shortage in RE.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.