Papers
Topics
Authors
Recent
2000 character limit reached

On Computable Online Learning (2302.04357v1)

Published 8 Feb 2023 in cs.LG and stat.ML

Abstract: We initiate a study of computable online (c-online) learning, which we analyze under varying requirements for "optimality" in terms of the mistake bound. Our main contribution is to give a necessary and sufficient condition for optimal c-online learning and show that the Littlestone dimension no longer characterizes the optimal mistake bound of c-online learning. Furthermore, we introduce anytime optimal (a-optimal) online learning, a more natural conceptualization of "optimality" and a generalization of Littlestone's Standard Optimal Algorithm. We show the existence of a computational separation between a-optimal and optimal online learning, proving that a-optimal online learning is computationally more difficult. Finally, we consider online learning with no requirements for optimality, and show, under a weaker notion of computability, that the finiteness of the Littlestone dimension no longer characterizes whether a class is c-online learnable with finite mistake bound. A potential avenue for strengthening this result is suggested by exploring the relationship between c-online and CPAC learning, where we show that c-online learning is as difficult as improper CPAC learning.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.