Papers
Topics
Authors
Recent
2000 character limit reached

Learning Dynamical Systems by Leveraging Data from Similar Systems (2302.04344v3)

Published 8 Feb 2023 in stat.ML, cs.LG, cs.SY, and eess.SY

Abstract: We consider the problem of learning the dynamics of a linear system when one has access to data generated by an auxiliary system that shares similar (but not identical) dynamics, in addition to data from the true system. We use a weighted least squares approach, and provide finite sample error bounds of the learned model as a function of the number of samples and various system parameters from the two systems as well as the weight assigned to the auxiliary data. We show that the auxiliary data can help to reduce the intrinsic system identification error due to noise, at the price of adding a portion of error that is due to the differences between the two system models. We further provide a data-dependent bound that is computable when some prior knowledge about the systems, such as upper bounds on noise levels and model difference, is available. This bound can also be used to determine the weight that should be assigned to the auxiliary data during the model training stage.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.