Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Weighted Edit Distance Computation: Strings, Trees and Dyck (2302.04229v1)

Published 8 Feb 2023 in cs.DS

Abstract: Given two strings of length $n$ over alphabet $\Sigma$, and an upper bound $k$ on their edit distance, the algorithm of Myers (Algorithmica'86) and Landau and Vishkin (JCSS'88) computes the unweighted string edit distance in $\mathcal{O}(n+k2)$ time. Till date, it remains the fastest algorithm for exact edit distance computation, and it is optimal under the Strong Exponential Hypothesis (STOC'15). Over the years, this result has inspired many developments, including fast approximation algorithms for string edit distance as well as similar $\tilde{\mathcal{O}}(n+$poly$(k))$-time algorithms for generalizations to tree and Dyck edit distances. Surprisingly, all these results hold only for unweighted instances. While unweighted edit distance is theoretically fundamental, almost all real-world applications require weighted edit distance, where different weights are assigned to different edit operations and may vary with the characters being edited. Given a weight function $w: \Sigma \cup {\varepsilon }\times \Sigma \cup {\varepsilon } \rightarrow \mathbb{R}_{\ge 0}$ (such that $w(a,a)=0$ and $w(a,b)\ge 1$ for all $a,b\in \Sigma \cup {\varepsilon}$ with $a\ne b$), the goal is to find an alignment that minimizes the total weight of edits. Except for the vanilla $\mathcal{O}(n2)$-time dynamic-programming algorithm and its almost trivial $\mathcal{O}(nk)$-time implementation, none of the aforementioned developments on the unweighted edit distance apply to the weighted variant. In this paper, we propose the first $\mathcal{O}(n+$poly$(k))$-time algorithm that computes weighted string edit distance exactly, thus bridging a fundamental gap between our understanding of unweighted and weighted edit distance. We then generalize this result to weighted tree and Dyck edit distances, which lead to a deterministic algorithm that improves upon the previous work for unweighted tree edit distance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.