Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Scale-Independent Multi-Objective Reinforcement Learning with Convergence Analysis (2302.04179v4)

Published 8 Feb 2023 in cs.LG

Abstract: Many sequential decision-making problems need optimization of different objectives which possibly conflict with each other. The conventional way to deal with a multi-task problem is to establish a scalar objective function based on a linear combination of different objectives. However, for the case of having conflicting objectives with different scales, this method needs a trial-and-error approach to properly find proper weights for the combination. As such, in most cases, this approach cannot guarantee an optimal Pareto solution. In this paper, we develop a single-agent scale-independent multi-objective reinforcement learning on the basis of the Advantage Actor-Critic (A2C) algorithm. A convergence analysis is then done for the devised multi-objective algorithm providing a convergence-in-mean guarantee. We then perform some experiments over a multi-task problem to evaluate the performance of the proposed algorithm. Simulation results show the superiority of developed multi-objective A2C approach against the single-objective algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)