Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Extragradient-Type Methods with $\mathcal{O} (1/k)$ Last-Iterate Convergence Rates for Co-Hypomonotone Inclusions (2302.04099v2)

Published 8 Feb 2023 in math.OC and stat.ML

Abstract: We develop two "Nesterov's accelerated" variants of the well-known extragradient method to approximate a solution of a co-hypomonotone inclusion constituted by the sum of two operators, where one is Lipschitz continuous and the other is possibly multivalued. The first scheme can be viewed as an accelerated variant of Tseng's forward-backward-forward splitting (FBFS) method, while the second one is a Nesterov's accelerated variant of the "past" FBFS scheme, which requires only one evaluation of the Lipschitz operator and one resolvent of the multivalued mapping. Under appropriate conditions on the parameters, we theoretically prove that both algorithms achieve $\mathcal{O}(1/k)$ last-iterate convergence rates on the residual norm, where $k$ is the iteration counter. Our results can be viewed as alternatives of a recent class of Halpern-type methods for root-finding problems. For comparison, we also provide a new convergence analysis of the two recent extra-anchored gradient-type methods for solving co-hypomonotone inclusions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube