Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Source Code Recommender Systems: The Practitioners' Perspective (2302.04098v1)

Published 8 Feb 2023 in cs.SE

Abstract: The automatic generation of source code is one of the long-lasting dreams in software engineering research. Several techniques have been proposed to speed up the writing of new code. For example, code completion techniques can recommend to developers the next few tokens they are likely to type, while retrieval-based approaches can suggest code snippets relevant for the task at hand. Also, deep learning has been used to automatically generate code statements starting from a natural language description. While research in this field is very active, there is no study investigating what the users of code recommender systems (i.e., software practitioners) actually need from these tools. We present a study involving 80 software developers to investigate the characteristics of code recommender systems they consider important. The output of our study is a taxonomy of 70 "requirements" that should be considered when designing code recommender systems. For example, developers would like the recommended code to use the same coding style of the code under development. Also, code recommenders being "aware" of the developers' knowledge (e.g., what are the framework/libraries they already used in the past) and able to customize the recommendations based on this knowledge would be appreciated by practitioners. The taxonomy output of our study points to a wide set of future research directions for code recommenders.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube