Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Monge, Bregman and Occam: Interpretable Optimal Transport in High-Dimensions with Feature-Sparse Maps (2302.04065v1)

Published 8 Feb 2023 in stat.ML, cs.LG, and q-bio.GN

Abstract: Optimal transport (OT) theory focuses, among all maps $T:\mathbb{R}d\rightarrow \mathbb{R}d$ that can morph a probability measure onto another, on those that are the ``thriftiest'', i.e. such that the averaged cost $c(x, T(x))$ between $x$ and its image $T(x)$ be as small as possible. Many computational approaches have been proposed to estimate such Monge maps when $c$ is the $\ell_22$ distance, e.g., using entropic maps [Pooladian'22], or neural networks [Makkuva'20, Korotin'20]. We propose a new model for transport maps, built on a family of translation invariant costs $c(x, y):=h(x-y)$, where $h:=\tfrac{1}{2}|\cdot|_22+\tau$ and $\tau$ is a regularizer. We propose a generalization of the entropic map suitable for $h$, and highlight a surprising link tying it with the Bregman centroids of the divergence $D_h$ generated by $h$, and the proximal operator of $\tau$. We show that choosing a sparsity-inducing norm for $\tau$ results in maps that apply Occam's razor to transport, in the sense that the displacement vectors $\Delta(x):= T(x)-x$ they induce are sparse, with a sparsity pattern that varies depending on $x$. We showcase the ability of our method to estimate meaningful OT maps for high-dimensional single-cell transcription data, in the $34000$-$d$ space of gene counts for cells, without using dimensionality reduction, thus retaining the ability to interpret all displacements at the gene level.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.