Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

WAT: Improve the Worst-class Robustness in Adversarial Training (2302.04025v1)

Published 8 Feb 2023 in cs.LG

Abstract: Deep Neural Networks (DNN) have been shown to be vulnerable to adversarial examples. Adversarial training (AT) is a popular and effective strategy to defend against adversarial attacks. Recent works (Benz et al., 2020; Xu et al., 2021; Tian et al., 2021) have shown that a robust model well-trained by AT exhibits a remarkable robustness disparity among classes, and propose various methods to obtain consistent robust accuracy across classes. Unfortunately, these methods sacrifice a good deal of the average robust accuracy. Accordingly, this paper proposes a novel framework of worst-class adversarial training and leverages no-regret dynamics to solve this problem. Our goal is to obtain a classifier with great performance on worst-class and sacrifice just a little average robust accuracy at the same time. We then rigorously analyze the theoretical properties of our proposed algorithm, and the generalization error bound in terms of the worst-class robust risk. Furthermore, we propose a measurement to evaluate the proposed method in terms of both the average and worst-class accuracies. Experiments on various datasets and networks show that our proposed method outperforms the state-of-the-art approaches.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)