Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AVeCQ: Anonymous Verifiable Crowdsourcing with Worker Qualities (2302.03941v1)

Published 8 Feb 2023 in cs.CR

Abstract: In crowdsourcing systems, requesters publish tasks, and interested workers provide answers to get rewards. Worker anonymity motivates participation since it protects their privacy. Anonymity with unlinkability is an enhanced version of anonymity because it makes it impossible to ``link'' workers across the tasks they participate in. Another core feature of crowdsourcing systems is worker quality which expresses a worker's trustworthiness and quantifies their historical performance. Notably, worker quality depends on the participation history, revealing information about it, while unlinkability aims to disassociate the workers' identities from their past activity. In this work, we present AVeCQ, the first crowdsourcing system that reconciles these properties, achieving enhanced anonymity and verifiable worker quality updates. AVeCQ relies on a suite of cryptographic tools, such as zero-knowledge proofs, to (i) guarantee workers' privacy, (ii) prove the correctness of worker quality scores and task answers, and (iii) commensurate payments. AVeCQ is developed modularly, where the requesters and workers communicate over a platform that supports pseudonymity, information logging, and payments. In order to compare AVeCQ with the state-of-the-art, we prototype it over Ethereum. AVeCQ outperforms the state-of-the-art in three popular crowdsourcing tasks (image annotation, average review, and Gallup polls). For instance, for an Average Review task with $5$ choices and $128$ participating workers AVeCQ is 40\% faster (including overhead to compute and verify the necessary proofs and blockchain transaction processing time) with the task's requester consuming 87\% fewer gas units.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.