Papers
Topics
Authors
Recent
2000 character limit reached

Catch Me If You Can: Improving Adversaries in Cyber-Security With Q-Learning Algorithms (2302.03768v1)

Published 7 Feb 2023 in cs.AI and cs.MA

Abstract: The ongoing rise in cyberattacks and the lack of skilled professionals in the cybersecurity domain to combat these attacks show the need for automated tools capable of detecting an attack with good performance. Attackers disguise their actions and launch attacks that consist of multiple actions, which are difficult to detect. Therefore, improving defensive tools requires their calibration against a well-trained attacker. In this work, we propose a model of an attacking agent and environment and evaluate its performance using basic Q-Learning, Naive Q-learning, and DoubleQ-Learning, all of which are variants of Q-Learning. The attacking agent is trained with the goal of exfiltrating data whereby all the hosts in the network have a non-zero detection probability. Results show that the DoubleQ-Learning agent has the best overall performance rate by successfully achieving the goal in $70\%$ of the interactions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.