Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adaptive Aggregation for Safety-Critical Control (2302.03586v1)

Published 7 Feb 2023 in cs.LG and cs.AI

Abstract: Safety has been recognized as the central obstacle to preventing the use of reinforcement learning (RL) for real-world applications. Different methods have been developed to deal with safety concerns in RL. However, learning reliable RL-based solutions usually require a large number of interactions with the environment. Likewise, how to improve the learning efficiency, specifically, how to utilize transfer learning for safe reinforcement learning, has not been well studied. In this work, we propose an adaptive aggregation framework for safety-critical control. Our method comprises two key techniques: 1) we learn to transfer the safety knowledge by aggregating the multiple source tasks and a target task through the attention network; 2) we separate the goal of improving task performance and reducing constraint violations by utilizing a safeguard. Experiment results demonstrate that our algorithm can achieve fewer safety violations while showing better data efficiency compared with several baselines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.