Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-Task Deep Recommender Systems: A Survey (2302.03525v2)

Published 7 Feb 2023 in cs.IR

Abstract: Multi-task learning (MTL) aims at learning related tasks in a unified model to achieve mutual improvement among tasks considering their shared knowledge. It is an important topic in recommendation due to the demand for multi-task prediction considering performance and efficiency. Although MTL has been well studied and developed, there is still a lack of systematic review in the recommendation community. To fill the gap, we provide a comprehensive review of existing multi-task deep recommender systems (MTDRS) in this survey. To be specific, the problem definition of MTDRS is first given, and it is compared with other related areas. Next, the development of MTDRS is depicted and the taxonomy is introduced from the task relation and methodology aspects. Specifically, the task relation is categorized into parallel, cascaded, and auxiliary with main, while the methodology is grouped into parameter sharing, optimization, and training mechanism. The survey concludes by summarizing the application and public datasets of MTDRS and highlighting the challenges and future directions of the field.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.