Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the relationship between multivariate splines and infinitely-wide neural networks (2302.03459v2)

Published 7 Feb 2023 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We consider multivariate splines and show that they have a random feature expansion as infinitely wide neural networks with one-hidden layer and a homogeneous activation function which is the power of the rectified linear unit. We show that the associated function space is a Sobolev space on a Euclidean ball, with an explicit bound on the norms of derivatives. This link provides a new random feature expansion for multivariate splines that allow efficient algorithms. This random feature expansion is numerically better behaved than usual random Fourier features, both in theory and practice. In particular, in dimension one, we compare the associated leverage scores to compare the two random expansions and show a better scaling for the neural network expansion.

Citations (2)

Summary

We haven't generated a summary for this paper yet.