Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AniPixel: Towards Animatable Pixel-Aligned Human Avatar (2302.03397v2)

Published 7 Feb 2023 in cs.CV

Abstract: Although human reconstruction typically results in human-specific avatars, recent 3D scene reconstruction techniques utilizing pixel-aligned features show promise in generalizing to new scenes. Applying these techniques to human avatar reconstruction can result in a volumetric avatar with generalizability but limited animatability due to rendering only being possible for static representations. In this paper, we propose AniPixel, a novel animatable and generalizable human avatar reconstruction method that leverages pixel-aligned features for body geometry prediction and RGB color blending. Technically, to align the canonical space with the target space and the observation space, we propose a bidirectional neural skinning field based on skeleton-driven deformation to establish the target-to-canonical and canonical-to-observation correspondences. Then, we disentangle the canonical body geometry into a normalized neutral-sized body and a subject-specific residual for better generalizability. As the geometry and appearance are closely related, we introduce pixel-aligned features to facilitate the body geometry prediction and detailed surface normals to reinforce the RGB color blending. We also devise a pose-dependent and view direction-related shading module to represent the local illumination variance. Experiments show that AniPixel renders comparable novel views while delivering better novel pose animation results than state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.