Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

AniPixel: Towards Animatable Pixel-Aligned Human Avatar (2302.03397v2)

Published 7 Feb 2023 in cs.CV

Abstract: Although human reconstruction typically results in human-specific avatars, recent 3D scene reconstruction techniques utilizing pixel-aligned features show promise in generalizing to new scenes. Applying these techniques to human avatar reconstruction can result in a volumetric avatar with generalizability but limited animatability due to rendering only being possible for static representations. In this paper, we propose AniPixel, a novel animatable and generalizable human avatar reconstruction method that leverages pixel-aligned features for body geometry prediction and RGB color blending. Technically, to align the canonical space with the target space and the observation space, we propose a bidirectional neural skinning field based on skeleton-driven deformation to establish the target-to-canonical and canonical-to-observation correspondences. Then, we disentangle the canonical body geometry into a normalized neutral-sized body and a subject-specific residual for better generalizability. As the geometry and appearance are closely related, we introduce pixel-aligned features to facilitate the body geometry prediction and detailed surface normals to reinforce the RGB color blending. We also devise a pose-dependent and view direction-related shading module to represent the local illumination variance. Experiments show that AniPixel renders comparable novel views while delivering better novel pose animation results than state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.