Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

AutoWS: Automated Weak Supervision Framework for Text Classification (2302.03297v1)

Published 7 Feb 2023 in cs.CL

Abstract: Creating large, good quality labeled data has become one of the major bottlenecks for developing machine learning applications. Multiple techniques have been developed to either decrease the dependence of labeled data (zero/few-shot learning, weak supervision) or to improve the efficiency of labeling process (active learning). Among those, Weak Supervision has been shown to reduce labeling costs by employing hand crafted labeling functions designed by domain experts. We propose AutoWS -- a novel framework for increasing the efficiency of weak supervision process while decreasing the dependency on domain experts. Our method requires a small set of labeled examples per label class and automatically creates a set of labeling functions to assign noisy labels to numerous unlabeled data. Noisy labels can then be aggregated into probabilistic labels used by a downstream discriminative classifier. Our framework is fully automatic and requires no hyper-parameter specification by users. We compare our approach with different state-of-the-art work on weak supervision and noisy training. Experimental results show that our method outperforms competitive baselines.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.