Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

AutoWS: Automated Weak Supervision Framework for Text Classification (2302.03297v1)

Published 7 Feb 2023 in cs.CL

Abstract: Creating large, good quality labeled data has become one of the major bottlenecks for developing machine learning applications. Multiple techniques have been developed to either decrease the dependence of labeled data (zero/few-shot learning, weak supervision) or to improve the efficiency of labeling process (active learning). Among those, Weak Supervision has been shown to reduce labeling costs by employing hand crafted labeling functions designed by domain experts. We propose AutoWS -- a novel framework for increasing the efficiency of weak supervision process while decreasing the dependency on domain experts. Our method requires a small set of labeled examples per label class and automatically creates a set of labeling functions to assign noisy labels to numerous unlabeled data. Noisy labels can then be aggregated into probabilistic labels used by a downstream discriminative classifier. Our framework is fully automatic and requires no hyper-parameter specification by users. We compare our approach with different state-of-the-art work on weak supervision and noisy training. Experimental results show that our method outperforms competitive baselines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube