Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Traffic Shaping and Hysteresis Mitigation Using Deep Reinforcement Learning in a Connected Driving Environment (2302.03141v1)

Published 6 Feb 2023 in cs.MA, cs.SY, and eess.SY

Abstract: A multi-agent deep reinforcement learning-based framework for traffic shaping. The proposed framework offers a key advantage over existing congestion management strategies which is the ability to mitigate hysteresis phenomena. Unlike existing congestion management strategies that focus on breakdown prevention, the proposed framework is extremely effective after breakdown formation. The proposed framework assumes partial connectivity between the automated vehicles which share information. The framework requires a basic level of autonomy defined by one-dimensional longitudinal control. This framework is primarily built using a centralized training, centralized execution multi-agent deep reinforcement learning approach, where longitudinal control is defined by signals of acceleration or deceleration commands which are then executed by all agents uniformly. The model undertaken for training and testing of the framework is based on the well-known Double Deep Q-Learning algorithm which takes the average state of flow within the traffic stream as the model input and outputs actions in the form of acceleration or deceleration values. We demonstrate the ability of the model to shape the state of traffic, mitigate the negative effects of hysteresis, and even improve traffic flow beyond its original level. This paper also identifies the minimum percentage of CAVs required to successfully shape the traffic under an assumption of uniformly distributed CAVs within the loop system. The framework illustrated in this work doesnt just show the theoretical applicability of reinforcement learning to tackle such challenges but also proposes a realistic solution that only requires partial connectivity and continuous monitoring of the average speed of the system, which can be achieved using readily available sensors that measure the speeds of vehicles in reasonable proximity to the CAVs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.