Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Dividing Good and Better Items Among Agents with Bivalued Submodular Valuations (2302.03087v3)

Published 6 Feb 2023 in cs.GT and cs.AI

Abstract: We study the problem of fairly allocating a set of indivisible goods among agents with {\em bivalued submodular valuations} -- each good provides a marginal gain of either $a$ or $b$ ($a < b$) and goods have decreasing marginal gains. This is a natural generalization of two well-studied valuation classes -- bivalued additive valuations and binary submodular valuations. We present a simple sequential algorithmic framework, based on the recently introduced Yankee Swap mechanism, that can be adapted to compute a variety of solution concepts, including max Nash welfare (MNW), leximin and $p$-mean welfare maximizing allocations when $a$ divides $b$. This result is complemented by an existing result on the computational intractability of MNW and leximin allocations when $a$ does not divide $b$. We show that MNW and leximin allocations guarantee each agent at least $\frac25$ and $\frac{a}{b+2a}$ of their maximin share, respectively, when $a$ divides $b$. We also show that neither the leximin nor the MNW allocation is guaranteed to be envy free up to one good (EF1). This is surprising since for the simpler classes of bivalued additive valuations and binary submodular valuations, MNW allocations are known to be envy free up to any good (EFX).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.