Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bitrate-Constrained DRO: Beyond Worst Case Robustness To Unknown Group Shifts (2302.02931v2)

Published 6 Feb 2023 in cs.LG

Abstract: Training machine learning models robust to distribution shifts is critical for real-world applications. Some robust training algorithms (e.g., Group DRO) specialize to group shifts and require group information on all training points. Other methods (e.g., CVaR DRO) that do not need group annotations can be overly conservative, since they naively upweight high loss points which may form a contrived set that does not correspond to any meaningful group in the real world (e.g., when the high loss points are randomly mislabeled training points). In this work, we address limitations in prior approaches by assuming a more nuanced form of group shift: conditioned on the label, we assume that the true group function (indicator over group) is simple. For example, we may expect that group shifts occur along low bitrate features (e.g., image background, lighting). Thus, we aim to learn a model that maintains high accuracy on simple group functions realized by these low bitrate features, that need not spend valuable model capacity achieving high accuracy on contrived groups of examples. Based on this, we consider the two-player game formulation of DRO where the adversary's capacity is bitrate-constrained. Our resulting practical algorithm, Bitrate-Constrained DRO (BR-DRO), does not require group information on training samples yet matches the performance of Group DRO on datasets that have training group annotations and that of CVaR DRO on long-tailed distributions. Our theoretical analysis reveals that in some settings BR-DRO objective can provably yield statistically efficient and less conservative solutions than unconstrained CVaR DRO.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.