Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Maximum Correntropy Kalman Filter (2302.02694v1)

Published 6 Feb 2023 in math.OC, cs.SY, eess.SP, and eess.SY

Abstract: The Kalman filter provides an optimal estimation for a linear system with Gaussian noise. However when the noises are non-Gaussian in nature, its performance deteriorates rapidly. For non-Gaussian noises, maximum correntropy Kalman filter (MCKF) is developed which provides an improved result. But when the system model differs from nominal consideration, the performance of the MCKF degrades. For such cases, we have proposed a new robust filtering technique which maximize a cost function defined by exponential of weighted past and present errors along with the Gaussian kernel function. By solving this cost criteria we have developed prior and posterior mean and covariance matrix propagation equations. By maximizing the correntropy function of error matrix, we have selected the kernel bandwidth value at each time step. Further the conditions for convergence of the proposed algorithm is also derived. Two numerical examples are presented to show the usefulness of the new filtering technique.

Citations (4)

Summary

We haven't generated a summary for this paper yet.