Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Offline Minimax Soft-Q-learning Under Realizability and Partial Coverage (2302.02392v2)

Published 5 Feb 2023 in cs.LG and stat.ML

Abstract: In offline reinforcement learning (RL) we have no opportunity to explore so we must make assumptions that the data is sufficient to guide picking a good policy, taking the form of assuming some coverage, realizability, BeLLMan completeness, and/or hard margin (gap). In this work we propose value-based algorithms for offline RL with PAC guarantees under just partial coverage, specifically, coverage of just a single comparator policy, and realizability of soft (entropy-regularized) Q-function of the single policy and a related function defined as a saddle point of certain minimax optimization problem. This offers refined and generally more lax conditions for offline RL. We further show an analogous result for vanilla Q-functions under a soft margin condition. To attain these guarantees, we leverage novel minimax learning algorithms to accurately estimate soft or vanilla Q-functions with $L2$-convergence guarantees. Our algorithms' loss functions arise from casting the estimation problems as nonlinear convex optimization problems and Lagrangifying.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.