Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Maximal $k$-Edge-Connected Subgraphs in Weighted Graphs via Local Random Contraction (2302.02290v1)

Published 5 Feb 2023 in cs.DS

Abstract: The \emph{maximal $k$-edge-connected subgraphs} problem is a classical graph clustering problem studied since the 70's. Surprisingly, no non-trivial technique for this problem in weighted graphs is known: a very straightforward recursive-mincut algorithm with $\Omega(mn)$ time has remained the fastest algorithm until now. All previous progress gives a speed-up only when the graph is unweighted, and $k$ is small enough (e.g.~Henzinger~et~al.~(ICALP'15), Chechik~et~al.~(SODA'17), and Forster~et~al.~(SODA'20)). We give the first algorithm that breaks through the long-standing $\tilde{O}(mn)$-time barrier in \emph{weighted undirected} graphs. More specifically, we show a maximal $k$-edge-connected subgraphs algorithm that takes only $\tilde{O}(m\cdot\min{m{3/4},n{4/5}})$ time. As an immediate application, we can $(1+\epsilon)$-approximate the \emph{strength} of all edges in undirected graphs in the same running time. Our key technique is the first local cut algorithm with \emph{exact} cut-value guarantees whose running time depends only on the output size. All previous local cut algorithms either have running time depending on the cut value of the output, which can be arbitrarily slow in weighted graphs or have approximate cut guarantees.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.