Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Maximal $k$-Edge-Connected Subgraphs in Weighted Graphs via Local Random Contraction (2302.02290v1)

Published 5 Feb 2023 in cs.DS

Abstract: The \emph{maximal $k$-edge-connected subgraphs} problem is a classical graph clustering problem studied since the 70's. Surprisingly, no non-trivial technique for this problem in weighted graphs is known: a very straightforward recursive-mincut algorithm with $\Omega(mn)$ time has remained the fastest algorithm until now. All previous progress gives a speed-up only when the graph is unweighted, and $k$ is small enough (e.g.~Henzinger~et~al.~(ICALP'15), Chechik~et~al.~(SODA'17), and Forster~et~al.~(SODA'20)). We give the first algorithm that breaks through the long-standing $\tilde{O}(mn)$-time barrier in \emph{weighted undirected} graphs. More specifically, we show a maximal $k$-edge-connected subgraphs algorithm that takes only $\tilde{O}(m\cdot\min{m{3/4},n{4/5}})$ time. As an immediate application, we can $(1+\epsilon)$-approximate the \emph{strength} of all edges in undirected graphs in the same running time. Our key technique is the first local cut algorithm with \emph{exact} cut-value guarantees whose running time depends only on the output size. All previous local cut algorithms either have running time depending on the cut value of the output, which can be arbitrarily slow in weighted graphs or have approximate cut guarantees.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube