Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Design Booster: A Text-Guided Diffusion Model for Image Translation with Spatial Layout Preservation (2302.02284v1)

Published 5 Feb 2023 in cs.CV and cs.AI

Abstract: Diffusion models are able to generate photorealistic images in arbitrary scenes. However, when applying diffusion models to image translation, there exists a trade-off between maintaining spatial structure and high-quality content. Besides, existing methods are mainly based on test-time optimization or fine-tuning model for each input image, which are extremely time-consuming for practical applications. To address these issues, we propose a new approach for flexible image translation by learning a layout-aware image condition together with a text condition. Specifically, our method co-encodes images and text into a new domain during the training phase. In the inference stage, we can choose images/text or both as the conditions for each time step, which gives users more flexible control over layout and content. Experimental comparisons of our method with state-of-the-art methods demonstrate our model performs best in both style image translation and semantic image translation and took the shortest time.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.