Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Structural Explanations for Graph Neural Networks using HSIC (2302.02139v1)

Published 4 Feb 2023 in cs.LG and stat.ML

Abstract: Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner. Recently, GNNs have been receiving increased attention in machine learning and data mining communities because of the higher performance they achieve in various tasks, including graph classification, link prediction, and recommendation. However, the complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions. To handle the interpretability issues, recently, various GNN explanation methods have been proposed. In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs using the Hilbert-Schmidt independence criterion (HSIC), which captures the nonlinear dependency between two variables through kernels. More specifically, we extend the GraphLIME method for node explanation with a group lasso and a fused lasso-based node explanation method. The group and fused regularization with GraphLIME enables the interpretation of GNNs in substructure units. Then, we show that the proposed approach can be used for the explanation of sequential graph classification tasks. Through experiments, it is demonstrated that our method can identify crucial structures in a target graph in various settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.